Affine Permutations and an Affine Coxeter Monoid

نویسنده

  • Tom Denton
چکیده

In this expository paper, we describe results on pattern avoidance arising from the affine Catalan monoid. The schema of affine codes as canonical decompositions in conjunction with two-row moves is detailed, and then applied in studying the Catalan quotient of the 0-Hecke monoid. We prove a conjecture of Hanusa and Jones concerning periodicity in the number of fully-commutative affine permutations. We then re-frame prior results on fully commutative elements using the affine codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine permutations of type A

We study combinatorial properties, such as inversion table, weak order and Bruhat order, for certain infinite permutations that realize the affine Coxeter group Ãn.

متن کامل

Canonical Decompositions of Affine Permutations, Affine Codes, and Split k-Schur Functions

We develop a new perspective on the unique maximal decomposition of an arbitrary affine permutation into a product of cyclically decreasing elements, implicit in work of Thomas Lam [Lam06]. This decomposition is closely related to the affine code, which generalizes the kbounded partition associated to Grassmannian elements. We also prove that the affine code readily encodes a number of basic co...

متن کامل

The enumeration of fully commutative affine permutations

We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of...

متن کامل

Algebraic and Affine Pattern Avoidance

We investigate various connections between the 0Hecke monoid, Catalan monoid, and pattern avoidance in permutations, providing new tools for approaching pattern avoidance in an algebraic framework. In particular, we characterize containment of a class of ‘long’ patterns as equivalent to the existence of a corresponding factorization. We then generalize some of our constructions to the affine se...

متن کامل

On 321-Avoiding Permutations in Affine Weyl Groups

We introduce the notion of 321-avoiding permutations in the affine Weyl group W of type An−1 by considering the group as a George group (in the sense of Eriksson and Eriksson). This enables us to generalize a result of Billey, Jockusch and Stanley to show that the 321-avoiding permutations in W coincide with the set of fully commutative elements; in other words, any two reduced expressions for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013